Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
NPJ Clim Atmos Sci ; 5(1): 54, 2022.
Article in English | MEDLINE | ID: covidwho-1915293

ABSTRACT

The COVID-19 restrictions in 2020 have led to distinct variations in NO2 and O3 concentrations in China. Here, the different drivers of anthropogenic emission changes, including the effects of the Chinese New Year (CNY), China's 2018-2020 Clean Air Plan (CAP), and the COVID-19 lockdown and their impact on NO2 and O3 are isolated by using a combined model-measurement approach. In addition, the contribution of prevailing meteorological conditions to the concentration changes was evaluated by applying a machine-learning method. The resulting impact on the multi-pollutant Health-based Air Quality Index (HAQI) is quantified. The results show that the CNY reduces NO2 concentrations on average by 26.7% each year, while the COVID-lockdown measures have led to an additional 11.6% reduction in 2020, and the CAP over 2018-2020 to a reduction in NO2 by 15.7%. On the other hand, meteorological conditions from 23 January to March 7, 2020 led to increase in NO2 of 7.8%. Neglecting the CAP and meteorological drivers thus leads to an overestimate and underestimate of the effect of the COVID-lockdown on NO2 reductions, respectively. For O3 the opposite behavior is found, with changes of +23.3%, +21.0%, +4.9%, and -0.9% for CNY, COVID-lockdown, CAP, and meteorology effects, respectively. The total effects of these drivers show a drastic reduction in multi-air pollutant-related health risk across China, with meteorology affecting particularly the Northeast of China adversely. Importantly, the CAP's contribution highlights the effectiveness of the Chinese government's air-quality regulations on NO2 reduction.

2.
J Environ Manage ; 317: 115460, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-1867356

ABSTRACT

This work presents the temporal and spatial characteristics of the major air pollutants and their associated health risks in China from 2019 to 2020, by using the monitoring data from 367 cities. The annual average PM2.5, PM10, NO2, SO2, CO, and O3 concentrations decreased by 10.9%, 13.2%, 9.3%, 10.1%, 9.4%, and 5.5% from 2019 to 2020. National average PM2.5 concentration in 2020 met the standard of 35 µg/m3, and that of O3 decreased from 2019. COVID-19 lockdown affected NO2 level dramatically, yet influences on PM2.5 and O3 were less clear-cut. Positive correlations between PM2.5 and O3 were found, even in winter in all five key regions, e.g., Jing-Jin-Ji (JJJ), FenWei Plain (FWP), Yangtze River Delta (YRD), Pearl River Delta (PRD) and Chengdu-Chongqing Region (CCR), indicating importance of secondary production for both PM2.5 and O3. Large seasonal variability of PM2.5-SO2 correlation indicates a varying role of SO2 to PM2.5 pollution in different seasons; and generally weak correlations in winter between PM2.5 and NO2 or SO2 reveal the complexity of secondary formation processes to PM2.5 pollution in winter. Multilinear regression analysis between PM2.5 and SO2, NO2 and CO demonstrates that PM2.5 is more sensitive to the change of NO2 than SO2 in JJJ, FWP, PRD and CCR, suggesting a priority of NOx emission control for future PM2.5 reduction. Furthermore, the new World Health Organization Air Quality Guidelines (WHO AQG2021) were adopted to calculate the excess health risks (ER) as well as the health-risk based air quality index (HAQIWHO) of the pollutants. Such assessment points out the severity of air pollution associated health risks under strict standards: 40.0% of days had HAQIWHO>100, while only 14.4% days had AQI>100. PM2.5 ER was generally larger than O3 ER, but O3 ER in low PM2.5 region (PRD) and during summer became more serious. Notably, NO2 ER became even more important than PM2.5 due to its strict limit of WHO AQG2021. Overall, our results highlight the increasing importance of O3 in both air quality evaluation and health risk assessment, and the importance of coordinated mitigation of multiple pollutants (mainly PM2.5, O3 and NO2) in protecting the public health.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , China , Cities , Communicable Disease Control , Environmental Monitoring , Humans , Nitrogen Dioxide/analysis , Particulate Matter/analysis
3.
Atmospheric Chemistry and Physics ; 22(8):5495-5514, 2022.
Article in English | ProQuest Central | ID: covidwho-1811067

ABSTRACT

PM2.5, generated via both direct emission and secondary formation, can have varying environmental impacts due to different physical and chemical properties of its components. However, traditional methods to quantify different PM2.5 components are often based on online or offline observations and numerical models, which are generally high economic cost- or labor-intensive. In this study, we develop a new method, named Multi-Tracer Estimation Algorithm (MTEA), to identify the primary and secondary components from routine observation of PM2.5. By comparing with long-term and short-term measurements of aerosol chemical components in China and the United States, it is proven that MTEA can successfully capture the magnitude and variation of the primary PM2.5 (PPM) and secondary PM2.5 (SPM). Applying MTEA to the China National Air Quality Network, we find that (1) SPM accounted for 63.5 % of the PM2.5 in cities in southern China on average during 2014–2018, while the proportion dropped to 57.1 % in the north of China, and at the same time the secondary proportion in regional background regions was ∼ 19 % higher than that in populous regions;(2) the summertime secondary PM2.5 proportion presented a slight but consistent increasing trend (from 58.5 % to 59.2 %) in most populous cities, mainly because of the recent increase in O3 pollution in China;(3) the secondary PM2.5 proportion in Beijing significantly increased by 34 % during the COVID-19 lockdown, which might be the main reason for the observed unexpected PM pollution in this special period;and finally, (4) SPM and O3 showed similar positive correlations in the Beijing-Tianjin-Hebei (BTH) and Yangtze River Delta (YRD) regions, but the correlations between total PM2.5 and O3 in these two regions, as determined from PPM levels, were quite different. In general, MTEA is a promising tool for efficiently estimating PPM and SPM, and has huge potential for future PM mitigation.

4.
J Environ Manage ; 287: 112296, 2021 Jun 01.
Article in English | MEDLINE | ID: covidwho-1116982

ABSTRACT

Air pollution attributed to substantial anthropogenic emissions and significant secondary formation processes have been reported frequently in China, especially in Beijing-Tianjin-Hebei (BTH) and Yangtze River Delta (YRD). In order to investigate the aerosol evolution processes before, in, and after the novel coronavirus (COVID-19) lockdown period of 2020, ambient monitoring data of six air pollutants were analyzed from Jan 1 to Apr 11 in both 2020 and 2019. Our results showed that the six ambient pollutants concentrations were much lower during the COVID-19 lockdown due to a great reduction of anthropogenic emissions. BTH suffered from air pollution more seriously in comparison of YRD, suggesting the differences in the industrial structures of these two regions. The significant difference between the normalized ratios of CO and NO2 during COVID-19 lockdown, along with the increasing PM2.5, indicated the oxidation of NO2 to form nitrate and the dominant contribution of secondary processes on PM2.5. In addition, the most health risk factor was PM2.5 and health-risked based air quality index (HAQI) values during the COVID-19 pandemic in YRD in 2020 were all lower than those in 2019. Our findings suggest that the reduction of anthropogenic emissions is essential to mitigate PM2.5 pollution, while O3 control may be more complicated.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Beijing , China , Communicable Disease Control , Environmental Monitoring , Humans , Pandemics , Particulate Matter/analysis , SARS-CoV-2
5.
Geophys Res Lett ; 47(19): e2020GL089035, 2020 Oct 16.
Article in English | MEDLINE | ID: covidwho-1030451

ABSTRACT

In this study, we evaluated the variations of air quality in Lanzhou, a typical city in Northwestern China impacted by the COVID-19 lockdown. The mass concentration and chemical composition of non-refractory submicron particulate matter (NR-PM1) were determined by a high-resolution aerosol mass spectrometer during January-March 2020. The concentration of NR-PM1 dropped by 50% from before to during control period. The five aerosol components (sulfate, nitrate, ammonium, chloride, and organic aerosol [OA]) all decreased during the control period with the biggest decrease observed for secondary inorganic species (70% of the total reduction). Though the mass concentration of OA decreased during the control period, its source emissions varied differently. OA from coal and biomass burning remained stable from before to during control period, while traffic and cooking related emissions were reduced by 25% and 50%, respectively. The low concentration during the control period was attributed to the lower production rate for secondary aerosols.

6.
Atmos Res ; 249: 105328, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-880403

ABSTRACT

With outbreak of the novel coronavirus disease (COVID-19), immediate prevention and control actions were imposed in China. Here, we conducted a timely investigation on the changes of air quality, associated health burden and economic loss during the COVID-19 pandemic (January 1 to May 2, 2020). We found an overall improvement of air quality by analyzing data from 31 provincial cities, due to varying degrees of NO2, PM2.5, PM10 and CO reductions outweighing the significant O3 increase. Such improvement corresponds to a total avoided premature mortality of 9410 (7273-11,144) in the 31 cities by comparing the health burdens between 2019 and 2020. NO2 reduction was the largest contributor (55%) to this health benefit, far exceeding PM2.5 (10.9%) and PM10 (23.9%). O3 instead was the only negative factor among six pollutants. The period with the largest daily avoided deaths was rather not the period with strict lockdown but that during February 25 to March 31, due to largest reduction of NO2 and smallest increase of O3. Southwest, Central and East China were regions with relatively high daily avoided deaths, while for some cities in Northeast China, the air pollution was even worse, therefore could cause more deaths than 2019. Correspondingly, the avoided health economic loss attributable to air quality improvement was 19.4 (15.0-23.0) billion. Its distribution was generally similar to results of health burden, except that due to regional differences in willingness to pay to reduce risks of premature deaths, East China became the region with largest daily avoided economic loss. Our results here quantitatively assess the effects of short-term control measures on changes of air quality as well as its associated health and economic burden, and such information is beneficial to future air pollution control.

7.
Geophys Res Lett ; 47(12): e2020GL088533, 2020 Jun 28.
Article in English | MEDLINE | ID: covidwho-592112

ABSTRACT

It is a puzzle as to why more severe haze formed during the New Year Holiday in 2020 (NYH-20), when China was in an unprecedented state of shutdown to contain the coronavirus (COVID-19) outbreak, than in 2019 (NYH-19). We performed a comprehensive measurement and modeling analysis of the aerosol chemistry and physics at multiple sites in China (mainly in Shanghai) before, during, and after NYH-19 and NYH-20. Much higher secondary aerosol fraction in PM2.5 were observed during NYH-20 (73%) than during NYH-19 (59%). During NYH-20, PM2.5 levels correlated significantly with the oxidation ratio of nitrogen (r 2 = 0.77, p < 0.01), and aged particles from northern China were found to impede atmospheric new particle formation and growth in Shanghai. A markedly enhanced efficiency of nitrate aerosol formation was observed along the transport pathways during NYH-20, despite the overall low atmospheric NO2 levels.

SELECTION OF CITATIONS
SEARCH DETAIL